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ABSTRACT

The solvability of the nonlinear operato r equation

w = x + Bx , where B is accretive in a general Banach

space X is studied by means of discrete approximations.

In particular , an algorithm is given for solving the equation

in the case tha t B is continuous ari d everywhere defined .
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ON THE RANGE OF ACCRFTI VE OPERATORS

Michael G. Cranda il t & Amnon Pazy

Introduction .

Let X be a real Banach space and let B D(B) C X -. X be a

nonlinear operator . B is called accretive if

11x 1 - x2 11 ~~ 11x 1 - x 2 + X( Bx 1 
- Bx 2 ) II  for )~ > 0 , D(B).

If B is accretive , then B is m-accretive if X = R ( I  + B), i .e. for every

we X there is an x € D(B) such that w = x + Bx . One of the first results

in the study of accretive operators was obtained by G. Minty [5] and implied

that every continuous everywhere defined accretlve opera tor in a HU bert

space is m-accretive. This latter result was extended to genera l Banach

spaces by R. Martin [4]. The known proofs of Marti n ’s theorem employ the

solvability of the initial-value problem

(1) ~~ 
0

where A is con tinuou s ari d accretive on X . The existence theory for

equat1o~ (I) has been generalized to allow cases In which A is neither

continuou s nor single-valued . For recent developments see ,

e.g. , Y. Kobayashi [3] and M. Pierre [7 ,8]. This existence theory is rather

technical and complex. The present paper was motivated by the desire to

find a proof of the ‘above mentioned theorem of Martin which is direct , con-

st~~ctive and which does not rely on the solvability of (I) .

tSuppo.~ed in part by NSF grant MCS 76-10227
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If B is continuous , everywhere defined and accretlve we show in

Theorem 2 of Section 1 how to choose numbers e (0 ,1] so tha t the se-

quence defined by Xk+l ak+l~
Ck 

- 

~~
_ a

k+l )(B
~ k

_ z)  converges to the unique

solution xx, of x , + Bx *, = z. (The choice of °k+i depends on Xk and

+ •~~~~ + In fact , our main results easily adapt to provide elementa ry

proofs (I . e.,  proofs not relying on ( 1)) of the strong generalizations of Martin ’s

theorem obtained in [3] and [6). In particular , the perturbation theorem of

Webb [9] as generalized by Barbu [1] follows easily.

The main results are stated in Section 1 and proved in SectIon 2. Then

variou s known results are obtained as applications in the final Section 3.

1. The Main Results.

Let B be a mapp ing from X to the subsets of X which is accretive ,

i. e.

(1. 1) H x1 - x2 + X(y 1 
- y 2 ) l l  > ~x1 - x 2 11

for X. > 0 , y1 € Bx1, x~ € D(B) = ix t X : Bx ~ q }. Given we X we consider

the solvability of the problem w € R(I + B), I. e. can we find x € X such

that w e x + Bx (equivalently, w - x e Bx). Replacing B by B where

B x  = Bx - w we reduce to the case w 0

Definition: A sequence {xk ) 0 is admissible for the problem 0 R(I + B)

if there exist 8X~ and numbers hk > 0 , k = 1, 2 , . . .  such that

Co

( i  ~~~h k = o o

(i .2)~
( i i )  ~ ~ 

X
k÷l 

- + hk+l
(x

k+l + 
~k+l~~ 

< 00
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11x 1 - xj il ~ lix, + Y 1 II (1 + hk )
~~ +~~~~

hk iiz k lI 
k~~+1 

h Il Z Il

for i > j > 1 . Since 
~ 

h k =~~~, H ( l + h k ) ’ = O .
k= 1 k =fl- 1

Thus by (2.9)

(2.10) u r n  sup 11x 1 - x~ < Z 
~~ 

h
k IIz k Ii

1+1

for all P . Letting 1 -. 00 we find that {xk ) Is a Cauchy seq ’ience and

hence convergent .

The other possibility is that 
~~~

h k <~~~ . This time we use the

assertion
I

Ii x~ - x, ~~. lix, + ~
‘
, 

ii ~~ 
hk + ~ 

h k II Z k II ~k=I +l k=t +1
fr om Lemma 1. Now Lemma 2 (with A = 0 , B = lix, + y1 II) implies

x~ - x~fl < II x, + y1 ~ 
h
k + 

~J h k IIZ k II + hk IIZ k II•
k=J+ 1 k~ l +1 k=I +1

Letting j ,j -  Co we again fInd (2 . 10) (si nce 
~~

hk <~~) and {x.K} is Cauchy

as before.

Proof of Theorem 1. Part (a) is an Immediate consequence of Lemma 3. To

obtain part (b) let lim x = x
00 

arid y €  Bx . Rewriting (2 .1) we have
k~, 0 0 k

(2 . 11) 
~k+l - = h~~ 1 (xk 

- X
k l  + h k+l (z k+l - Xk+l - Y)) .

Since B is accretive

(2 . 12) 
~ 

X~~fj  
- xii ~~ ii X

k4. l 
- x + X(Yk+j - y) ll for X > 0 .

Substitute (2.11) in (2.12), mu ltiply by hk+l /) and m’i nipulate to find :

-8- 
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c

(1 + h k+l
) I I X k (x H  < I l X k~ X l$ + hk+j llz k+l lJ + 1 11  

-

h
- 

k+ 1 - - h k l )lI xk l ~xii 
~~ 11 Xk 

- x i i  + h k+j Il z f I

+ 11(1 - 

h
k l  

- - h k l ) (x
~

xk j
) - h k+j x

k l~ h k l y i l  - 
h
k l  lIX k+l~X ll

and therefore

(2 . 13) ( 1+h k+l )
~ix ~

xk I II ~ 
11X-x ~ 1J + X ’hk+l(ii x~

xk l  + M x + y) lI

- ll x ~~k+l Ii ) + h k+l il z k 1H

Iterating this inequality from k P to k = i-i yields

i
(2 . 14) lix — x H  ~ lix — x,iI H (1 + h 4 ) 4 

+
j = I +l

I i

~ ( f l  ( 1+h ) ‘)h .( ii x-x . + X( x+y) tf - Ii x-x II )
J= P +1 m=j m .1

I I
+ ~ ( H  (1 +
J=I +1 m=J

Since h = 00, the first term on the rtght of (2 .14) tends to zero as I
j = l

The third term on the right also tends to zero as i -. 00 by the dominated con-

vergence theorem (each term individually tends to 0 and (h~ ~ z~ i i )  Is a

dominating summa ble sequence). Finally, by (2 . 6) and

lim ( I fx -x . + X( x+y)~( - ilx-x 3 il ) = i(x-x 00 + X(x+y) Il _ I i x -x
00 1i

j ..0 00

we obtain upon letting i -ø oo in (2 . 14) that

lix-x 00 Il~~ X ’(llx -x
00 

+ X(x+y) lI - lix-x
00 Ii)

or , after rearranging,

(1+)a)Ilx - x
00 11 < f l x  - x

00 
+ X(x + y) iI

which is the desired inequality.

-9-
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Proof of Theorem 3. We begin by showing that If B is accretlve and sati s-

fies (R ) then there is an admissible sequence for 0 ~ R(I + B) .

For x c  D(B) and c >  0 let A(x ,c)  be the set of those numbers X > 0

for which there exists x k and ~ Bx~ such that

+ X (x
~ + y

~
)
~ x f i  < x

where x( X) = min ( 1 , X) for X~ (0 ,oo] . A(x , c) is nonempty by condition ( R ) ,

and we define X(x,c) = supA(x,c). Let x0 c D(B) be arbitrary and suppose

x1, x 2 , . . .  ~
Xk l  

and h 1, h 2, .  .. , hk l  
have been chosen . Set

k-i
(2.15) £k = exp( - h . - 1)

j=l

ari d choose h k > °~ ~~ ~
‘k ~ Bxk SO that

I 
x(~~X(x k l , c k )) < h k < 00

(2 . 16)

L i iX k 
- Xk l  + h k (x k + <

In this way we get infinite sequences {h k }, {xk }, 
~~~~ 

Now by (2. 16),

(2.15) and with Zk 
as in (2.1),

(2 . 17) ~~
h k i f Z k iI < ~~ x(h k )c k < f 00 

e~~ ds < Co~

Thu s, if ~ h k = 00~ {Xk } is admissibl e and we are done. Let 
~k = h1 +

+ h k . Assuming lim 
~k = <°° we will reach a contradiction by use of a

k~~ 00

now standard idea of Nagumo [6], and thus complete the proof of (a) .  By

Lemma 3, x
00 

= lim Xk exists. By (R) there exists X 0 € (0,00), ~~ € B~

such that

— — — ~~~~~~~~~~
lix - x

00 
+ X0( y + x) li < e

-10 -
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Then

~~~ 1~ ’~
lix - Xk l + 

~~~~~~ 
+ x) < e 

- 

x( = x( x0) C k

for all k large enough. Hence , by (2 . 16), 2hk ~ X (X 0) f or large k , contra-

dicti ng ° k = n 1 + ... + h k ¶~, 
<~~

To provE part (b ) ,  we use ( R )  to assert the existence of sequences

\ . > 0 , U t D (B),  V . c Bu , such that
1 1 1 1

(~~~~~ . 1 8 )  + (U , + v 1) 0

By Theorem 1(b) we also have
U . - X U . - X

(2 . 19) (1 + ‘. ) ll  ‘ 
~ II < II + (u , + v ) i i .

Combinin g (2 . 18) and (2 .19)  we conclude x 1(u 1 
- x~~) — ‘0 as well as

u . -’ x,~ and subsequently,  from (2.  18), u , + v . —* 0 . Thus 0 ~ R(I + B)

a n d 0 ~ RU 4- B) if B is closed .

Proof of Theorem .~~~~ We first show that (4), (5 )  defines an admissiUe se-

quence. With = Bxk 
we have, by (4), (5)

~~~
ilX k+l 

- X

k 
+ hk+j(xk+l+Y k+1)II = 

~-2~ 
h~~ 1~1Bx ~~ 1 

- Bxk ii

k~ 0 
h k+l exp( -~~ h . - l~~ < 1.

Thus it is sufficient to show 
k~0 

h~ 00 Suppose 
~k = h 1 + ... +

o <~~~. Thect X
k 

converges to a limit x by Lemma 3. Since B is con-

tinuous there is an integer n such that

Z n I
II B( x - Bx ) - Bx H < exp(-o - 1)

00 u~z~ 
00 00 00

Then also

— 11— 
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II B( 2~~ - Bx k ) - Bx k ii < exp( -(h 1 + ... + h k )
~

l)
1+2 1+2

for large k end therefore n k < n  for large k . But then 
~ k = h 1 + ... +

h k 
-~~ oo by (4) ,  a contradiction .

Let t xk } be an admissible sequence for 0 €  R(I + B) and (2 .1 )  hold

with 

~ 
h k il z k li < 0 0  Then Xk -. x and summing (2 .1)  from k = m to

k = n -i yields

n h . x - x  n
_ _ _  

m m  I
-

~~~ (x~ + y~) = 
-

~~~ + 
-

~~~ 
~~~~ 

h k zkj =m+l n m n m n m

where a- . = h1 + ... + h~. The right hand side above tends to zero as n ,m -~~Co

subject to a- - a- > I , while the left hand side consists of convex combina-n m —

tions of x~ + y~. 
Thus if x~ + has a limit as j —~~ 00 , ~t must be zero .

If B is continuou s and D(B) is closed, x
00 

€ D( B) and x , + Bx , -‘ x00 
+ Bx00,

proving (b) .

Proof of Pro position 1. Let 0 c R(I + B) . Let {a k )  be an arbi trary sum-

mable sequence of positive numbers and {h k } a sequence of positive num-

bers satisfying h k = Co 

k~I 
ak

tI
k 

<00 Choose X
k 

€ D(B), 
~
‘k Bxk

such that iiX k + ~
‘k” 

<G k . Then we claim {xk} is an admissible sequence

for 0 R(I + B) and we may use (h k } in (3) .  Indeed

JJ Xk+l 
- X

k 
H < ~J Xk+l 

- xk + 
~
‘k+l 

- 

~~

‘
k

11 < ~ xk+l + 
~
‘k+l~ 

+ xk +

~ ~k+l~~~
ak

so

(~ x~~1 ~xk+h k÷l(xk+i+Yk+1) II < 

~ 
it xk+l - xk ~ +h k+l It xk+1+yk+l I~

< 2 
~k 

+ ak
h
k < 00 •

kEl k=l

-12-
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Thus (x k } is admissible .

In the proof of Theorem 2 we showed that certain convex combinations

of x~ + y. converged to 0 if (3 )  holds , so 0 is in the closed conve x hull

of R(I + B) if there is an admissible sequence. This completes the proof .

Remarks: From the proof of proposition 1 we see that if 0 € ~(I + B) them

there exist admissible sequences with arbitrary associated sequences th k }

satisfying 
~~ 

h k = ~~~. It is worth noting that if ( 3 )  holds and ir~f h k > 0  then

0€ R(I + B) for

h k (x k + 
~~~ 

= (x k i  - X
k 
+ h k 1(x k 1 + 

~k+ 1” - (x
k l  

- xk)

ari d the first term on the right tends to 0 by (3)  ( i i )  and the second does by

Theorem 1, so xk + 
~ k 

-‘ 0 . One can also show that Xk + 
~
‘k -‘ 0 if

: IiZ k U < -f’

k = 1
3. ApplicatI ons.

In this section we deduce two known general theorems on accretive

sets In Banach space as simple consequences of our results . We note that

the previously known proofs of these theorems were all dependent on the

existence of a solution to the Initial value problem (i).

We start  by introducing the following conditions:

(R 1) lim Imf dist(R(I + XA ) ;  x - xy)  0 ~ X €  y € X.

— 

Note that it is sufficient for (R 1) to hold only for every y in a dense sub-

set of X in order for it to hold for every y € X.

Lemma 4.

Let A be accretive and sati3fy (R 1). If P:D(.A) C X -a . X is continuous ,

then A+P sa tisf ies (R
1
).

-13-
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Proof:

If A satisfies (R 1) then for every y € X there are sequences X , -. 0

and y, € .Ax~ such that

( 3 . 1 )  ç’~x1 + k~y, - ( x - X
1y - X1Px))~~ 0 as i~~~00.

But

+ + X
1Px1 - (x - X~~)) = k~’(x 1 + X1y1 - (x - X~y - X Px))

+ Px~ - Px .

I n order to prove that MP  satisfies ( R 1) it is therefore sufficient to show

that x - ~ x as j  -
~~~~~~~ . From the accretiveness of A we have

11x1 - u l i  < ~x1 - u + X 1(y~ - v)Il for v~ Au

and from (3 .1) we then have

u r n  sup ~x1-u ~f < u r n  sup l ix  - u - X
1(y + Px 

-
~~ v ) f l  = -fix -u j~i — s  ~~ i~-. 00

for all u € D(A) and thus x~ -. x.

Let z € X be arbitrary. Taking P = I-z in the previou s lemma , It

follows that A = A l.! - z satisfies condition (R 1) and hence also (R) of

Section 1 and therefore by Theorem 3 we have :

Theorem (
~

‘. Kobayashi 131).

Let A be accretive and satisf y (R 1). Then A (the closure of A) is

m -accretjve .

We conclude with the following genera l perturbation theorem .

Theorem (‘i’. Kobayashi [31).

Let A be accretive and P : i5(~~c~~-~ X be continuou s. If A + P Is

accretive,then it is m-accretive if ari d only if A is m-eccretive .

-14-
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Proof:

Let A be m-accret ive then A is closed and satisfies (R 1) . There-

fore, by Lemma 4, A+ P satisfies (R 1) . Since , by the continuity of P , A+P is

closed and b~ as sumption it is accretlve , it follows from the previou s theorem

that  A4- P is m-accretive. if  A+P Is m-accret ive one has that  A = (A +P ) -P

is as well by the above.

The last theorem is a considerable generalization of the theorem of

R. Martin which was stated in ti~c introduction . Indeed Martin ’ s theorem is

obtained by taking A 0 on X . G. Webb [91 proved the above perturbation

result assuming that A was linear m-accretive with D(A) = X. Subsequent ly

V. Barbu [2] generalized Webb’ s result to the case ~ here A wa s a general

m-accretive operator and P : X -. X was continuous. Finally Y. Kobayashi

[3] proved the above theorem .
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